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A Physical Model for Biomedical Assays (Modeling I)
Relevant quantities for the assay are
I A density of bound particles d(x , y , t) ≥ 0, where the image will be

dobs(x , y) = d(x , y ,T ), which evolves coupled to

I the 3D density of free particles c(x , y , z , t) ≥ 0 on z ≥ 0, and to
I the source density rate of new particles s(x , y , t) ≥ 0, that is spatially sparse and

reveals the cell locations and secretion over time.
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An Observation Model for Biomedical Assays (I) (Modeling II)
We consider the image observation dobs ∈ D+, with D = L2 (R2) and prove that

dobs(x , y) =
∫ σmax

0
(gσ(x̄ , ȳ) ∗ a(x̄ , ȳ , σ)) (x , y) dσ ,

with a ∈ A+ and A ⊂ L2 (R2 × R+
)

a space of functions with bounded spatial
support, σmax =

√
2DT , and

I a(x , y , σ) is an equivalent of s(x , y , t) where the effect of adsorption and
desorption have been summarized.

a(x , y , σ) = σ

D

∫ T

σ2
2D

s(x , y ,T − η)ϕ
(
σ2

2D , η

)
dη .

I a(x , y , σ) preserves all the spatial information in s(x , y , t).
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An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .

I Adsorption (κa) and desorption (κd) only regulated by z-movement.
I x - and y -movements only depend on τ , total time in Brownian motion. In

particular, according to Green function for 2D diffusion, g√2Dτ (x , y).
I ϕ(τ, t) summarizes the effect of adsorption and desorption onto the time in free

motion τ for each time of final adsorption t.
I Change variables to those significative to x - and y -movement, σ =

√
2Dτ .



An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .
I Adsorption (κa) and desorption (κd) only regulated by z-movement.

I x - and y -movements only depend on τ , total time in Brownian motion. In
particular, according to Green function for 2D diffusion, g√2Dτ (x , y).

I ϕ(τ, t) summarizes the effect of adsorption and desorption onto the time in free
motion τ for each time of final adsorption t.

I Change variables to those significative to x - and y -movement, σ =
√

2Dτ .



An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .
I Adsorption (κa) and desorption (κd) only regulated by z-movement.
I x - and y -movements only depend on τ , total time in Brownian motion. In

particular, according to Green function for 2D diffusion, g√2Dτ (x , y).

I ϕ(τ, t) summarizes the effect of adsorption and desorption onto the time in free
motion τ for each time of final adsorption t.

I Change variables to those significative to x - and y -movement, σ =
√

2Dτ .



An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .
I Adsorption (κa) and desorption (κd) only regulated by z-movement.
I x - and y -movements only depend on τ , total time in Brownian motion. In

particular, according to Green function for 2D diffusion, g√2Dτ (x , y).
I ϕ(τ, t) summarizes the effect of adsorption and desorption onto the time in free

motion τ for each time of final adsorption t.

I Change variables to those significative to x - and y -movement, σ =
√

2Dτ .



An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .
I Adsorption (κa) and desorption (κd) only regulated by z-movement.
I x - and y -movements only depend on τ , total time in Brownian motion. In

particular, according to Green function for 2D diffusion, g√2Dτ (x , y).
I ϕ(τ, t) summarizes the effect of adsorption and desorption onto the time in free

motion τ for each time of final adsorption t.
I Change variables to those significative to x - and y -movement, σ =

√
2Dτ .



An Observation Model for Biomedical Assays (III) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as
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∫ σmax
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Consequences

Real observation (section) Simulated observation (section)
I Synthetic data

I An inverse problem
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Functional Inverse Diffusion (Optimization I)
We have dobs ∈ D+ and want to recover a ∈ A+. We propose the (non-smooth,
constrained) convex problem

min
a∈A

‖Aa − dobs‖2
D + δA+ (a)︸ ︷︷ ︸

non-negative

+λ
∫
R2

(∫ σmax

0
ξ2(σ)a2(x , y , σ) dσ

) 1
2

dxdy︸ ︷︷ ︸
group-sparsity

 ,

Proximal Optimization

I How do we solve this optimization problem? Can it be solved?
I Convex problem, but the existance and unicity of the solution are not given

(function spaces). Three terms, two non-smooth (with known prox), one smooth
(with non-trivial but manageable gradient).

I Do we need forward-backward primal-dual splitting?
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2017).
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Diffusion Operator, a 7→
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i) Bound on its operator norm. Then, using Jensen’s inequality and that
‖Gσ‖L(L2(R2),L2(R2)) = 1,

‖A‖L(A,D) ≤
√
σmax .

ii) Adjoint operator. We use that G∗σ = Gσ,

(A∗d) (x , y , σ) = Gσ{d(x , y)} .
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Proximal Op. for the Non-negative Group-Sparsity Regularizer (Optimization II)

γR(a) = δA+(a) + λγ
∥∥∥‖ξar‖L2(R+)

∥∥∥
L1(R2)

I The proximal operator of γR(a) for γ > 0 does not follow easily

I The separable sum property tells us that it would follow easily from proxγϑ(x) for
ϑ(x) = δX+(x) + ‖ξx‖X for X = L2 (ℵ), x ∈ X , and ℵ = {σ : ξ(σ) > 0}, which is
still hard because there is no good calculus for prox operators

I We show that this is one of the “good sums”, i.e., proxγϑ = (Id− PB̄ξ(γ)) ◦ PX+ ,
where PZ are projections on Z ⊂ X , B̄ξ (γ) = {x ∈ X :

∥∥ξ−1x
∥∥
X ≤ γ} and ◦

represents composition
I Then, in the simple case ξ(σ) = 1 if σ ∈ ℵ ⊂ [0, σmax] and 0 otherwise, if

p = proxγR(a), and we decompose a = aℵ + aℵc ,

pr = [aℵc,r]+ + [aℵ,r]+

1− γλ∥∥∥[aℵ,r]+
∥∥∥

L2(ℵ)


+

.
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Proximal Operator for the Non-negative Weigthed Norm (Optimization III)

I We show that if ϑ(x) = δX+(x) + ‖ξx‖X for X = L2 (ℵ), x ∈ X , and
ℵ = {σ : ξ(σ) > 0}, proxγϑ = (Id− PB̄ξ(γ)) ◦ PX+ .

I Consider first the well-known case of g(x), the scaled norm, and replace step by
step.

g(x) = γ ‖x‖X

g∗(x∗) = δB̄∗(γ)(x∗) proxg∗(x∗) = PB̄∗(γ) [x∗]
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Functional Inverse Diffusion - APG algorithm (Optimization IV)
Require: Initial a(0) ∈ A+, image observation dobs ∈ D+
Ensure: A solution aopt ∈ A+

1: b(0) ← a(0), i ← 0
2: repeat
3: i ← i + 1, α← t(i−1)−1

t(i)

4: a(i) ← b(i−1) − σ−1
maxA∗

(
Ab(i−1) − dobs

)
5: for all r ∈ R2 do

6: a(i)
r ←

[
a(i)

r

]
+

1− (2σmax)−1λ∥∥∥∥[a(i)
r

]
+

∥∥∥∥
L2([0,σmax ])


+

7: end for
8: b(i) ← a(i) + α

(
a(i) − a(i−1))

9: until convergence
10: aopt ← a(i)

Sequences of t(i) can be chosen as (Bech and Teboulle, 2009) or as (Chambolle and Dossal,
2015).



Discretization

supp (µ)

sensor’s grid

[0, σmax]
ℵ ℵcnm

k

x

σ̃

y

I Spatial grid given by camera sensor

I σ-grid with different levels of detail
I Inner approximation paradigm

(step-constant functions)
I Choice of normalization in restriction

and extension operators
I Resulting algorithm can be reasoned as

discrete APG
I The typical size of the variable a[m, n, k]

to recover will be 20482 × 6 = 25 · 106

I Different kernel approximations are
considered
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Evaluation on Synthetic Data
Besides thorough human testing on real data, we can evaluate our approach on
synthetic data. To evaluate the location accuracy, we run 10000 iterations of the
algorithm, find spatial maxima and threshold them optimally, and, defining a tolerance
of ∆ = 3 pix we compute the detection metrics

pre = TP
TP + FP , rec = TP

TP + FN , and F1 = 2 pre · rec
pre + rec .

Example

×
××
×

×: Real cells

+ ++ +

+: Detections
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Results on Synthetic Data (I)
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gbr3
k gbr1

k noise-free noisy deconvolution human

512× 512 noisy images with noise equivalent to 6-bit quantization.



Results on Synthetic Data (II)

True positions (orange triangles) and de-
tections (yellow circles).

Pixels’ contr. to the regularizer, i.e.,√∫
a2(x , y , σ)dσ.



Results on Real Data

Detection results (yellow circles) and hu-
man labeling (orange squares). F1-Score
relative to human, 0.9 (whole image).
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SpotNet - Learned iterations for faster inverse problems
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I Based on the learned gradient descent of (Gregor and LeCun, 2010), recently
explored by (Giryes, Eldar et al., 2018).

I See all details at https://github.com/poldap/SpotNet.

https://github.com/poldap/SpotNet
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Results for SpotNet with L = 3 and smaller kernels
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Medians
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I Evaluation of SpotNet and a generic ConvNet on MSE{â}.
I Training on 7 synthetic images with 1250 cells, validation on 3. Testing on 150

images containing 250, 750 or 1250 cells.



Results for SpotNet with L = 3 and smaller kernels
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I Evaluation of SpotNet and a generic ConvNet on F1 score as above.
I Trained on 7 images with 1250 cells.



Thank you
Please, feel free to ask questions.
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